NON-DESTRUCTIVE METHODS OF MEASURING SAWLOGS TO ESTIMATE THE PHYSICAL AND MECHANICAL PROPERTIES OF SAWN TIMBER

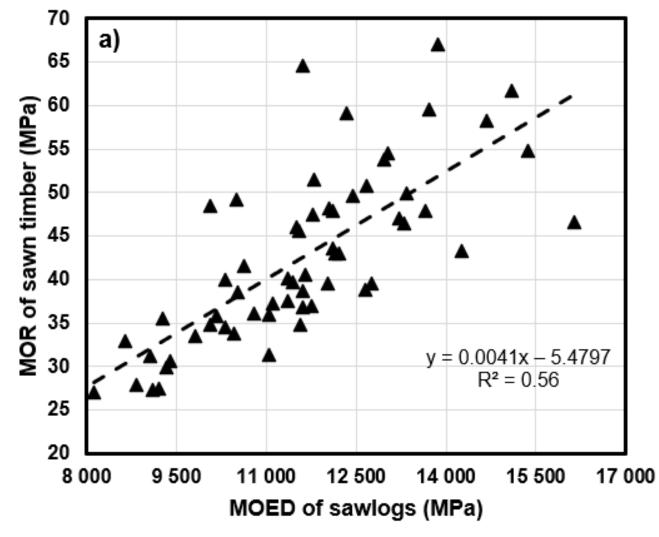
ROSTISLAV BEREZJUK*, MATĚJ ŠIMEK, PATRIK NOP, ROBERT MAŘÍK, JAN TIPPNER

Mendel University in Brno / Faculty of Forestry and Wood Technology / Department of Wood Science and Technology * e-mail: rostislav.berezjuk@mendelu.cz

INTRODUCTION AND OBJECTIVES:

In the Czech Republic – sawmill industry is a most important sector of primary processing, but it is relatively **conservative** and **slow developing**. The focus is primarily on processing technologies and less on technologies for sawlog quality grading. As a result, there is still **great potential for log pre-grading** to produce **strength-graded sawn timber**, which is enhanced by **developments in technologies** such as **computed tomography** (Ravoajanahary et al., 2025) or **acoustic methods** (Rais et al., 2020). The **combination of a multiple non-destructive methods** also appears to be an interesting option (Weidenhiller et al., 2023).

In order to improve the quality grading of sawlogs, it is necessary to apply a number of technological and scientific results in practice, with great emphasis being placed on the use of new non-destructive methods. New pre-sorting methods should respect the manufacturing of products with higher added value - strength-graded sawn timber. Based on these principles, this research aims to:


- i) determine the most suitable non-destructive methods for the qualitative grading of sawlogs;
- ii) define a suitable combination of this non-destructive methods; and
- iii) create sufficiently accurate models for predicting the mechanical properties of sawn timber.

MATERIALS AND METHODS:

- 60 Norway spruce (*Picea abies* L.) sawlogs
- Manual measurement of wood defects
- Measurement of acoustic properties of sawlogs
- CT scanning and cant sawing (3 boards 40/160/3000 mm)
- Measurement of acoustic properties of sawn timber:
 - a) Green sawn timber (whole 3 meters)
 - b) Dry sawn timber (whole 3 meters)
 - c) Dry sawn timber after trimming (worst 1.5 meters)
- Image defect analysis and determining of MOR, MOE and density (EN 408)

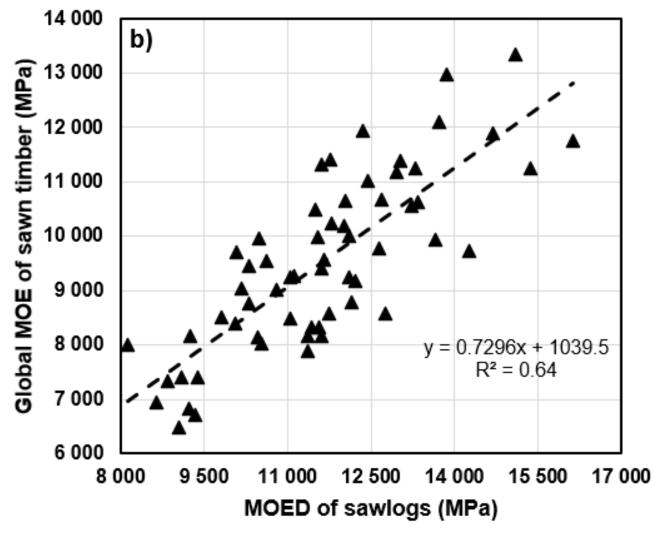


Fig. 4: Relationship between MOED of sawlogs and MOR of sawn timber (a); Relationship between MOED of sawlogs and global MOE of sawn timber (b)

Fig. 3: Sawn timber measurements

RESULTS AND NEXT STEPS:

- There is a great correlation between acoustic properties of sawlogs and mechanical properties of sawn timber
- Manually measured characteristics of sawlogs are not a very suitable predictor of the mechanical properties of sawn timber
- In follow-up research, it is appropriate to **expand the model** with parameters based on the processing of **CT scans of sawlogs**

REFERENCES:

- **1. RAIS, A. et al., 2020.** European beech log and lumber grading in wet and dry conditions using longitudinal vibration. Holzforschung 74, 939–947.
- RAVOAJANAHARY, T. et al., 2025. Variability in Wood Quality and Moisture Content Measured by an Industrial X-Ray Scanner Across 700,000 Sawlogs of Picea abies, Abies alba, and Pinus sylvestris. Forests 16, 1457.
- **WEIDENHILLER, A. et al., 2023.** Prediction of douglas fir sawn timber yield based on log computed tomography. In: Proceedings World Conference on Timber Engineering (WCTE 2023), Oslo, Norway.

ACKNOWLEDGEMENT:

This study was supported with funding provided by the Internal Grant Agency, Mendel University in Brno, project number IGA25-FFWT-IP-022. We would like to thank the Pila Olomučany for technical support and for allowing log sawing at this sawmill - especially the director Ing. Zbyněk Mikulášek and chief of the production Ing. František Mikulka.

www.ldf.mendelu.cz